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Profile Analysis in Single Crystal Ditfraetometry 
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BY R. DIAMOND 

Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, England 

It is shown that a suitable curve fitting procedure can reduce the standard deviation of intensity measure- 
ments made with a scanning diffractometer except when the intensity is large in relation to the back- 
ground level. The procedure has been implemented with an Arndt-Phillips linear diffractometer, on-line 
to a Ferranti Argus 312 computer. The shape of the profile which is fitted to the observed profile is 
learnt and continually revised. In typical cases the standard deviation of the intensity, as determined 
from counting statistics alone, is about 0.4-0.6 times that given by alternative methods. In addition 
to profile fitting, a straightforward peak-minus-background treatment is always done, and the two 
results are compared. This enables a large measure of internal consistency checking to be done, so that 
certain types of error condition can be detected. Criteria are also developed whereby the better of the 
two results may be chosen in each case, having regard to such parameters as the peak to background 
ratio and the closeness of fit accomplished in profile fitting. 

1. Introduction 

The Arndt-Phillips linear diffractometer as normally 
marketed is equipped to measure X-ray reflexions by 
scanning on o) (i.e. rotating the crystal with the slides 
stationary) with a stationary-crystal measurement of 
the background level at each end at the scan. This 
method of measurement involves only three measure- 
ments and will be referred to here as the background- 
peak-background (BPB) method. This procedure is 
only optimal if the peak exactly fills the angular width 
of the scan (the frame width), and this condition can- 
not be realized in practice because the peak varies a 
little in both width and position within the frame from 
place to place in reciprocal space. It may be necessary, 
for example, to use a 2 ° scan for a crystal giving peaks 
1 ° wide to be certain that the whole of the peak falls 
within the 2 ° scan for every reflexion. For purposes of 
comparison with other methods it is convenient to 
suppose that the crystal continues to move during the 
background measurements, so that this circumstance 
is exactly equivalent to a 4 ° scan in which the peak is 
required to fall within the central 2 °. In such a case the 
BPB method is very far from optimal. 

We shall describe in this paper a pair of methods 
which complement one another in their characteristics 
and which jointly are always optimal, such that in the 
conditions of the above example the whole of the avail- 
able counting time would be spent in the central 2 ° 
with very appreciable gain in accuracy. The only re- 
quirements are that the whole of the peak shall be 
within the scanned range which is now 2 ° (though the 
position of its centre is immaterial), and ideally the 
frame width should be about twice the peak width, or 
a little less, though the consideration of positional un- 
certainty of the peak is usually the over-riding one. In 
order to achieve this it is necessary to subdivide the 
scan into a number of small steps and to measure the 
counts associated with each step. Effectively, this means 
that the diffractometer must be on-line to a computer. 

The techniques employed to transmit the individual 
measurements direct to the core store of a computer 
are due to Arndt and Phizackerley and will be described 
elsewhere. 

The technique has been developed on a linear dif- 
fractometer fitted with three counters to measure 
three levels of reciprocal space simultaneously. Because 
of the curvature of the Ewald sphere, the three reflex- 
ions do not reach their maxima quite simultaneously, 
and therefore the frame width needs to be a little larger 
than would be required for a single counter instru- 
ment. This fact sets the BPB method at a further 
disadvantage in relation to the new technique. 

The pair of methods for on-line application will be 
referred to below as A and B. A is particularly valuable 
when the peak/background ratio is low and B is prefer- 
able when it is high. Together they are ideally suited to 
neutron diffraction or to X-ray diffraction from pro- 
teins where reflexions with a low peak to background 
ratio are common. However, the method depends for 
its success on there being a number of fairly strong re- 
flexions among the weaker ones, from which the shape 
of the learnt profile may be updated, and it assumes 
that the ideal profile of a weak reflexion differs from 
that of a strong reflexion only by a scale factor. 

The program processes data from all three counters 
in under a second and uses about 2K of core store 
(24 bit words). 

2. Theoretical survey 

2.1. Random errors 
In any diffractometer in which measurements are 

made by oscillating the crystal through a small angle 
the integrated intensity may always be written as 

I=I(ya,y2,... y~), (1) 

in which the y, represent the counts collected at each 
of a series of small steps or intervals of the oscillation 
angle, and the function I is designed to subtract out the 
background level. 
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It follows therefore that 

8I OI 
( , ~ i ) 2 =  z z - -  - -  ~y~,~yj 

i j ~y~ Oyj 

and, using ( )  to denote expected value, we have for 
the variance on I 

a2(I) -- ((cU)2)= f X OI cgI 
j 8y~ 8yj (fiYlfiY~), 

and since the individual ordinates y~ are statistically 
independent and the ]/n law for Poisson distributions 
applies, 

(fiyidyj)=y~ i=j } 
=0  i # j  (2) 

and 
2 

0"2(I) = x Y~ (3) 

It is our purpose in what follows to show how the 
function I may be chosen to reduce a(I) in relation to 
conventional methods, and at the same time meet the 
requirement that I shall represent the integrated inten- 
sity with the background removed. 

We suppose that the observations can be represented 
by 

Yobs = hi12 x + h212 2 ,  (4) 

in which hx is a column vector whose elements are all 
1/N, h2 is a column vector representing the shape of 
the observed profile, normalized so that 

N N 
~r" h t i  -= ~ hEi = 1 ; (5) 

i=1 i=1 

then 12i is the integrated background and 122 is the 
integrated peak. Then if we fit to this a calculated 
profile 

Yeale = g12x + g2~,2 (6) 

by the method of least squares, with g l=h l  and g2 
representing a peak normalized to unity, then provided 
g2 is compatible with h2 the value of 22 so found is a 
measure of the integrated intensity. We begin by con- 
sidering the dependence of 0"(1) on gl, g2, hi, h2, 121 
and 122 and the compatibility of g2 with h2. In the first 
place we ascribe unit weight to each y~ and later intro- 
duce weights to represent the smaller proportional error 
(larger absolute error) of the larger ordinates. 

Within the restriction of equal observational weights 
it is possible to write down expressions for I and 
a2(I). These are derived in Appendix B and summarized 
in Table 1. 

Case A is general and may be applied to other exam- 
ples not given in the table. 

Case B is, in fact, the peak-minus-background type 
of measurement in which m ordinates are supposed 
to be in the peak and n are taken to be pure back- 
ground. This method has the outstanding property that 
provided h2 vanishes in the background region where 
g2 vanishes, g2h2- -g292  so  that it yields 1=122 in all 
circumstances. It is therefore the safest with regard to 
systematic error. Any other form for g2 yields 1=122 
only if gEh2 = gEg2, which occurs if g2-" h2 and in certain 
other special cases considered in Appendix A. 

The general case A may be compared with case B 
using Schwarz's inequality in the form 

(~1f2)2--< llf~t2f2, (7) 

fl and f2 being column vectors of dimension N, then 
provided g2 has m elements non-zero and n = N - m  
which are zero; then setting 

Table 1. Summary of expressions for I and t r2( /)  

g2 and  h2 are c o l u m n  vectors  and  the ti lde denotes  t ranspos i t ion .  $22 is a row vector  whose  i th  e lement  is the  square  of  the  i th  
e lement  of  ~2. In case C the work ing  range  of  the c o n t i n u o u s  variable  x is Ixl --- a, and  the func t ions  are supposed  to be s ampled  
at  regular  intervals  of  2a/N 

Case g2 h2 I a2 (I)  

N g'2h2 - 1 1 1 -- 2N g2h2 + N2g'22h2 A A n y  A n y  /22 - //1 -{- 112 
N g 2 g 2 - 1  N ~ 2 g 2 - 1  [N ~2g2-112  

m 
B g2=l/m Any /22 /21 --if- +f12 

for  m p rov ided  
ordinates ,  h2 = 0 
g2 -~ 0 for  when  
r ema in ing  g2 = 0 
n = N - m  
ord ina tes  

2a 2a 2a ] /  2p2 r p2 + q2 --Pl/2 1 
C Np exp (-- 7~xE/p 2) ~-~ exp (-- 7¢xE/q 2) 1112 2a--.ol/2 /21 2a/pl/2-1 +/22 

4a 
1/p2 -k q2 

4a 2 

[2a]Pl/2-112 
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gives 

f l  = g 2  and 3~=l /m where g2¢0  
f2 = 0 where g2 = 0 

~2g2 >- 1/m . (8) 

Setting f l  = g~/2, f2 = g3/2 gives 

(~2g2) 2 < ~g2 (9) 

(in which we mean the ith power of a vector to be read 
as a vector each element of which is the ith power of 
the corresponding element). Accordingly, in the general 
case A, if gz has been chosen equal to 112 (which is the 
only important case), we see from the Table that 

m 
a2(I) =//1 an- +//2fl,  

in which 

and 

m 
1 1 ~Z . . . .  - -- ~2~  2 -  >_ 

n 

1 - 2N~g292 + N 2 g 2 g 2  . > 1 

f l =  1-2Ng292+ N 2 ( g z g 2 )  2 - 

(10) 

and p being unity in case B. 
We conclude that if the peak to background ratio 

m 1 - 1 / a  //2 < _ (11) 
//I n f l -  1 

then, with the foregoing conditions and assumptions, 
fitting the profileg2 to the observations will lead to a smal- 
ler variance on the resulting integrated intensity than 
would method B, which is the classical peak-minus- 
background method. This may, in fact, occur with 
proteins for all except the strongest reflexions for which 
the converse argument applies. The advantage, of 
course, arises from the excess of a over unity. 

These points are illustrated by case C in Table 1, 
in which both the observed and fitted profiles are as- 
sumed to be Gaussian of widths p and q in Ix[-< a. 
(It is never assumed that real profiles are Gaussian, 
and this example is only given to indicate the charac- 
teristics to be expected.) The numbers m and n do 
not occur in these expressions because there is intrins- 
ically no point in the working range at which the peak 
region is distinguished from the background region. 
In order to make a quantitative comparison we note 
that 

-~ l/~_ exp (-t2/2)dt=0.990, z=2.57 

=0.999,  ~=3.27 

so that if the peak region of the working range, 2am~ 
(m +n), is set to contain all but 1% of the diffraction 
peak, or all but O. 1%, then effectively 

all2 (m + n)z 
p mI/lr 

for the case p = q and the appropriate values of z. For 
the 0.1% case this gives 

//lm/n [ 0"15(m +n) 2 ] 
az(/)= 1.84+0.84 m/n +//z 1 + (0.46 re+n) 2 

and if a is such that this setting of z results in m = n this 
corresponds to e=2.68, f l= 1.29. At the 1% level and 
with the same assumptions (involving a different a) 

-- 1.90, f l= 1-36. Corresponding values of//2///1 below 
which profile fitting is advantageous are, by equation 
(11), 2.16 and 1.31. 

2.2. Systematic errors. 
The expression 

N~2hz- 1 
1 = 2 2 = / / 2  N g 2 g 2 - 1  

(12) 

shows that if g2h2~g292 then systematic errors are 
incurred in taking ~,2 as our measure of//2. Fig. 1 shows 
contours of 22///2 corresponding to case C as a function 
of the ratios alp and q]p. These curves seive to show 
the importance of matching the width p of the fitted 
profile to the width q of the observed profile. If q/p = 
1.1, for example, then the result, 22, will be ~ 6% low 
if alp =4.0 or ~ 10% low if a/p= 1.4. If this effect is 
not to offset the available advantage in random error, 
it is essential that good matching of widths be achieved. 
At first sight there appear to be two possible ap- 
proaches to the problem of avoiding systematic error 
in curve fitting. One of these is to arrange, by a learning 
process or otherwise, that gz=h2, and the other ap- 
proach is to fit to the observed curve a linear combina- 
tion of several normalized curves g~ of different shapes, 
taking the sum of their coefficients as representing 
the integrated intensity, with the hope that such a 
linear combination may be able to represent !12 suf- 
ficiently closely even if this is not known in advance. 
This possibility is studied in detail in Appendix A 
where it is proved that the twin objectives of mini- 
mizing a2(l) and avoiding systematic error by using 
several gt are mutually exclusive, despite the fact that 
it is possible to use several g~ without enlarging O'2(I). 

We conclude that the only practical way to proceed 
if the best advantage is sought, is to arrange for g2 to 
equal 112 and to fit this single curve. 

2.3. Weighted observations, comparison with the un- 
weighted ease 

Since the individual ordinates y~ have differing ac- 
curacies it follows from equation (2) that in fitting 
Yeale to Yobs the proper residual to minimize is 

If we write 
R= X (Yobs--Yeale)2/yobs . (13) 

W=diag  y ~-b~s (14) 

and let the ith element of W be co~=(1/y0obs then if 

A C 25A - 4* 



However, an expression for the variance derived 
from equation (3) may be given and is 

3 [1 N g z l - I  31) ]z a z ( I )  = D - z  X oo i --  (16) / 1 i 

c=Yous-Yeale the residual R = ~ W e  is minimized by 

~ = (GWG)-l(]Wyobs 

where G=(gl,gz).  But every element of the column 
Wy is unity, and since gx and gz are normalized 

1 
(22:) =((~WG)-I  ( 1 )  . (15) 

Note that the situation is now basically different in 
that  the observational quantities enter only as their 
reciprocals and only through the normal matrix. This 
complicates any satisfactory analysis of the charac- 
teristics of the system because the contributions of/x~ 
and/~z to a z ( I )  are no longer separable, and since the 
normal matrix is now data-dependent the properties of 
its inverse cannot be studied in terms of the fitted curves 
alone. 

in which 1=22 in equation (15), as before, and 

q/p 

D = Z ooi .  Z ooig22t - ( Z  ooigzi) z 
i t i 

OD 
3coi - - Z  colg 2] + g22t X coj--2g21 Z cojg21 

J J J 

~2(co0 =co,~. 

A number of comparative tests have been made be- 
tween a weighted and an unweighted curve fitting pro- 
cedure. In these tests the data and the g functions used 
were identical, and in most cases it was found that the 
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Fig. 1. Contours of the systematic error factor ,~2/P2 for a Gaussian of width p fitted to one of width q in [xl-<a, as defined in 
Table 1, as a function of alp and q]p,  for an unweighted least-squares fitting. The contours are at intervals of 0.05, the unity 
contour being a straight line. The diagram was prepared by the method of Gossling (1967). 
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variance given by equation (16) for the weighted 
case was smaller than that given by equation (3) 
for the unweighted case; the only exceptions to 
this occurred with peaks which were both extremely 
strong and badly fitted, but such cases are dealt with 
by method B (see below) for which the question of 
weighting does not arise. Furthermore, the weighted 
case was less susceptible to systematic error due to 
mismatching of peak widths. For both these reasons, 
and because the residual (13) is the correct one, it was 
decided to implement the method in the weighted 
form, assuming that the characteristics of such a scheme 
are not worse than those of the un-weighted scheme 
which has been extensively studied. 

3. Implementation 

3.1. Procedure 
The procedure which has been implemented uses 

equations (15) and (16) and learns a function g2 from 
the observations as successive reflexions are processed. 
The sequence is as follows: 

(i) The median of the observed peak is located using 
a pre-set number of ordinates either side of the centre. 

(ii) The observations are folded about the median so 
that the ith and (i+ 1)th ordinates are added, as are 
the ( i -  1)th and (i+2)th etc. The median is not gener- 
ally at the centre of the working range, so that some 
ordinates near one extreme have no corresponding 
ordinate the other side of the median, these ordinates 
are in the background region however, and are added 
together in pairs, so that at this stage we have N/2 ordi- 
nates representing the peak from edge to centre. 

The purpose of this step is to eliminate the anti- 
symmetric component of the profile, which contributes 
nothing to the integrated intensity but would contri- 
bute to the residual (13) if not removed or allowed for, 
and this residual is used at a later stage. This folding is 
valid provided that the median is not too near the end 
of the working range (a condition which can be detected 
and flagged) and it allows for the background to be 
sloping or for the peak to be off-centre but becomes 
invalid if both these conditions arise at once (because 
the background integral 21 corresponds to the back- 
ground level at the middle of the working range rather 
than at the median of the peak). 

(iii) The ordinates are added together in groups of 4. 
Having been collected at intervals of ~-~ degree they 
now represent data collected at ~-~ degree intervals. 
Coarser scanning steps than ~-~ degree would be ac- 
ceptable, but it is desirable that step (ii) should be done 
before (iii), i.e. on the finest scan step available, as 
misplacing the median affects the width of the peak 
after folding and peak width is known to be critical in 
relation to systematic error. 

Steps (ii) and (iii) are both done by addition rather 
than averaging so that the I/n law remains applicable. 

(iv) Results are calculated from equations (13), (15) 
and (16) using a profile gz already in the computer 

from previous operations, or, for the first reflexion, 
read in. Method A. 

(v) Results are also calculated by the peak-minus- 
background method (case B) in which the number of 
ordinates in the peak region, m, is set so that all ordi- 
nates within 4a of the median are included, where a 
is the current value of the r.m.s, width of the function 
g2. Method B. 

(vi) The function g2 is updated as follows. The back- 
ground level which is now available is subtracted from 
the observations and any ordinate which is then nega- 
tive or outside the range 4a from the median is replaced 
by zero and the result normalized to sum to unity. 
This is taken to represent the function hz. We then cal- 
culate a quantity y defined by 

(I/Io) 2 
Y -  1 + ( 1 / l o )  2 ' (17) 

where Io is a chosen constant, and replace g2 by g~ as 
follows 

g~ = yh2 + (1 - Y)g2 

so that strong reflexions are incorporated into the 
learnt profile and weak ones much less so. There is 
no special significance in this choice of the function 
(17) for y, but this function is a suitable one, easily cal- 
culated and better behaved than some alternatives, 
e.g. 

I/Io 

1+I / Io"  

(vii) A choice is now made between the results of 
the two methods [steps (iv) and (v)] and if there are 
indications of fault conditions these can be flagged at 
this stage. 

If, in the profile fitting method, yobs and yeale differ 
only by random noise, then the expected value of 
~ R / N *  from (13) is unity, and if it is much in excess of 
unity it is an indication that systematic error is pres- 
ent, either because g2 has not followed changes in hE 
sufficiently closely, or because the observations are 
themselves perturbed, e.g. by electronic noise pro- 
ducing a spike not attributable to X-ray quanta, or to 
a Laue streak in the background region. In the former 
case (gz not following hz) method B should be chosen, 
but in the other case (perturbed data) method A is 
usually better. It is not easy to distinguish these two 
cases on-line, but in the latter case it is usually the fact 
that the two methods give different answers. Ac- 
cordingly, if I / R ~  is large, method B is chosen, but a 
diagnostic message is also given if the methods differ. 

The choice algorithm currently in use is best defined 
by the following flow diagram in which quantities in 
square brackets are computed and tested. All arrows 
to the right are to the output routine 

* Here N relates to the reduced list of ordinates 
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[O'A - -  O'B] 
< 0  > 0  
~, choose B -+ 

[l/R-/N-const] 
<0  >0  
choose A choose B 

[(L4- IB) z -  2(a~ + a~)] 
<0  >_0 
$ print diagnostic message--> 

[ I -  const] 
< 0  > 0 - +  

[peak movement-const] 
<0  >0  

--+ print diagnostic message--~ 

The first diagnostic message draws attention to dif- 
fering results while the second traps the case in which 
the median-seeking routine has, in the virtual absence 
of a genuine peak, found a median more than 15 ordi- 
nates (out of 128) removed from the expected position 
(on the basis of the position of the previously processed 
peak on the same channel). In addition to these diag- 
nostics there are others which detect cases in which 
the frame width is too narrow, or in which the peak 
has run up against the end of the frame, and data 
transmission errors (from diffractometer to computer) 
are also trapped by means of a check-sum. 

The choice algorithm given above has been designed 
to be as safe as possible. In fact, it is more likely that a 
good measurement will have a diagnostic message 
attached to it than that a bad measurement will pass 
undetected. This is because valid measurements of 
very strong reflexions may be made with method B for 
which close agreement between the methods is not to 
be expected. Nevertheless, disagreements are still 
flagged. The program also contains a facility (hand 
switch controlled) for printing all 128 ordinates, and 
the observed, calculated and learnt profiles (16 ordi- 
nates each), which permits investigation of bad cases. 

The constant with which ] / ) ~ r  is compared to test 
ill-fitting cases is usually 1.25 or 1.125. This has been 
chosen by noting that values of I/R-/-.N as low as 0-7 are 
not uncommon and that values below 0.6 have been 
observed a number of times. This shows that fluctua- 
tions (i.e. random noise) on the observations may 
fortuitously match those on g2 to the extent of 0.3 or 
0.4 in /R/N,  so that, presumably, values as large as 
1.3 or 1.4 could occur and still be essentially random in 
origin. Setting the limit at 1.25 or 1.125 is therefore 
conservative. 

3-2. Examples 
Table 2 shows an example of some typical results ob- 

tained by this procedure. In this Table the first column 
contains indices as derived from the setting of the slides 
on the diffractometer. The second column contains a 

channel number identifying the three counters used. 
The third and fourth columns contain I and a(I) for 
the preferred method, whichever it is. The fifth and 
sixth contain I and G(I) for the other method. The 
seventh contains a choice indicator and is 1 if method A 
(profile fitting) has been preferred and has produced 
the results in columns 3 and 4, and is 2 if method B has 
been chosen. The eighth column contains the residual 
I/R/N, whose expected value is unity if the observed 
and fitted profiles differ only by random noise. The 
ninth column is the width from edge to centre, 4a, of 
the learnt profile, expressed as a number of ordinates 
truncated to a multiple of four. The tenth column is the 
position of the peak median, in which the tendency for 
channel 0 to have a smaller entry here is due to the 
curvature of the Ewald sphere. The final column con- 
tains y, calculated in this instance with I0--6144, which 
is on the high side for this size of crystal. 

For these measurements the background integral 
was about 2600 counts for channels 0 and 2 and about 
half that for channel 1. For channels 0 and 2 this 
means that profile fitting can be expected to produce a 
smaller variance than method B if the integrated peak 
counts are fewer than about 6000. 

The first reflexion to be processed uses a profile 
supplied to the program and not learnt from this crys- 
tal. As a result, the residual, 7.185, is very high and 
method B is chosen in consequence. The second re- 
flexion is then processed using the learnt image of the 
first for profile fitting and immediately the residual falls 
below 1.2 and both methods give results in close agree- 
ment. The third reflexion has a larger residual, as is 
usual for very strong reflexions and method B is ap- 
propriate in such cases. The fourth reflexion would, 
with the current version of the program, be rejected 
as needing remeasuring because (IA--IB) z exceeds 
2[aZ(IA) +a2(In)]. The most likely explanation for this 
is the presence of a white radiation streak in the back- 
ground region of this reflexion, as this is an inner re- 
flexion one removed from a reciprocal lattice axis. The 
large residuals for this and the remaining two channels 
of this setting are consistent with this explanation. The 
seventh and subsequent reflexions are typical and 
satisfactory in view of the large background, except 
that channel 1 for the 15 - 00 + 03 + setting should also 
be rejected on the grounds of disagreement between 
the methods. 

The total number of ordinates collected for each re- 
flexion was 128, which is a little larger than optimum 
for an edge to edge peak width of 56 ordinates, but is 
necessary to accommodate the fluctuations in median 
position. 

Table 3 is a second example, differing from the first 
in that here the background integral is below 1000 
counts on all three channels and the peak is a little 
narrower. Both of these facts reduce the advantage of 
method A over method B and differences between the 
standard deviations are accordingly smaller than previ- 
ously. The constant I0 has also been reduced to 2700, 
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so that the learning procedure is more responsive to 
change, as shown by the larger 7 values. In choosing I0 
one must strike a balance between fast response (small 
I0, short memory length) and the smoother learnt pro- 
file that results from compounding many observed pro- 
files into the learnt profile (large I0, long memory). 
The maximum tolerated VR/N has also been reduced 
to 1.125. No disagreements have occurred. 

In Fig. 2 we show one particular example of an ob- 
served and calculated profile. This is a case in which 
methods A and B gave substantially different results, 
and the reasons for the difference are worth considering. 
The Figure shows the 16 observed ordinates after the 
128 have been folded at the median and grouped 
together in fours, and the division between the peak 
and background regions for method B is placed be- 
tween the ninth and tenth ordinates, as indicated by the 
bar. The continuous curve is the fitted curve and the 
broken line is the learnt profile used in the fitting. 

The profile fitting method gave the result 544 + 59 
and method B gave 816 + 108. The difference between 
these is attributable to the way in which the back- 
ground level is determined, and to the actual nature of 
the fluctuations in the ordinates. In method B the back- 
ground level is the mean of the last 7 ordinates, which 
is 527, which is lower than the 544 arrived at by 
method A. The reason is that method A recognizes that 
all ordinates after the fourth are measuring mainly 
background and the fifth to ninth ordinates all exceed 
527. In particular, it recognizes the ninth ordinate as 
subject to a positive fluctuation of about 50 counts, 
whereas method B takes it literally. If the difference be- 
tween the ninth and tenth ordinates is just a random 
fluctuation, as it appears to be, then it is equally likely 
that they might have occurred the other way round, 
in which case method B would have given the result 
611 instead of 816, whereas method A would not alter. 
This example illustrates the sense in which it may 

Indices Channel 

• 15-00 +00 + 2 
• 15-00+00 + I 
"15-00+00 + 0 
,15-00+01+ . 
• 15-00 + 01+ 1 
• 15-00+01+ 0 
"15-00+02 + 2 
-15-00+02+ 1 
• 15-00+02 + 0 
"15-00+03+ 2 
-15-00+03 + 1 
~15-00+03 + 0 
-15-00+04 + ,_'~ 
• " 15-00+04+ 1 
"15-00+04+ 0 
"15-00+05 + 2 
• 15-00+05 + 1 
"15-00+05 + 0 
• 15-00+0S+ 2 
• 15-00+06+ 1 
• 15-00+06+ 0 
"15-00+07 + ~' 
• 15-00 + 07 + 1 
"15-00+07 + 0 
• 15-00+08+ 2_ 
• 15-00+08+ i 
• 15-00+06+ 9 
4'15-00+ 09+ 2 
• 1 5 - 0 0 + 0 ,  1 
• 1 5-00 + 09+ 0 

Table 2. Typical results obtained by the procedure described in § 3" 1 
1 stchoice 2n%hoice 

^ ~ Width 
I or(I) 1 a(I) C h o i c e  V'R----~ 4a 

+93(:.83 +101 +86-.94 +108 +2 +7" 185, +2'8 
+5595 +77 +5614 +7 8 +1 +1. 192 +28 

+15535 +128 +15558 +128 +2 +1.784 +28 
+985 +46 +7:35 7 +3 +2 +2-287 +2J 
+533 +33 +502 +29 +2 + I. 542 "2~ 

+1000 +46 +901 +40 +2 +1-952 +2J 
+999 +43 +1015 +57 +I +0.955 +2d 
+736 +41 +732 +36 +2 +1.449 +28 
+251 +32 +294 +49 +1 +0.766 +2 ,1 

+1263 +46 +1363 +59 +1 +0.398 +2~3 
+77;4 +~7~ +6~2 +42 +1 +1. 022 +23 

+70 + +135 +46 +1 +0.944 +2d 
+273 +32 +253 +49 +1 +0. 766 +2d 
+17~3 +24 +182 +34 +1 +1-079 +23 

+1306 +47 +1365 +60 +1 +1,132 +23 
+558 +3 8 +596 +51 +1 +1.138 +23 
+294 +27 +249 +36 +I +1.102 +2J 

+34 +27 +43 +45 +1 +0.902 +2S 
+694 +3~ +70"9 +52 + I + 1-023 +23 
+390 +2~ +366 +36 +I +0.823 +23 

+1258 +46 +1328 +58 +1 +1.034 +23 
+797 +40 +707 +53 +1 +1.063 +2~ 
+465 +30 +405 +35 +1 +0.819 +23 
+373 +33 +361 +43 +I +0. 599 +28 

+76 +2d +12 +44 +1 +1.089 +23 
+68 +20 +53 +32 +1 +0.580 +23 
+,:34 +26 +i07 +46 +1 +1-228 +2~ 

+242 +30 +245 +47 +I +0"7393 +23 
+141 +23 +128 +33 +1 +0-712 +2 6 
+ 13 ~ +29 +155 +46 +1 +0- 726 +2 d 

Peak 
position y 

+ 80 
+74 
+48 
+43 
+44 
+ "" 

.+49 

+51 
+48 
+3J 
+55 
+52 
+43 
+55 
+54 
+51 
+57 
+55 
+46 
+SO 
+57 
+48 
+54 
+60 
+53 
+64 
+60 
+48 

• 999 
. 4 5 ~  
• 854 
.016 
-006 
.021 
-025 
-014 
• 001 
"040 
-315 
.000 
-001 
-000 
-04~ 
-03 

-O30 
.01~ 4.,. 

-004 
-042 
.016 
.035 
-003 
-030 
.03,3 
• O00 
-001 
"030 
-000 
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be claimed that method A is less sensitive to random 
fluctuation than is method B and how it also gives 
weight to the region on the fringe of the peak, as well 
as the pure-background region, when determining the 
background level. Against this it might be said that the 
fault in this example lies with the learnt profile, and it 
is true that a wider learnt profile could account for 
much of the difference between the figures 544 and 611, 
but could not yield agreement between method A and 

816. As it stands, however, the disagreement would 
yield a diagnostic message. In this example the residual 
is 1.22 and the peak/background ratio is 0-06. 

Figs. 3 and 4 show a further comparison between 
methods A, B and BPB. Fig 4 shows the percentage 
a(I)/I as a function of I for each of the three methods 
on the basis of the circumstances shown in Fig. 3. 
Methods A and B operate on the central portion in 
which there are 1600 background counts and the width 

Indices 

Table 3. A second example of results obtained by the procedure of§3.1 (see text, §3.2) 
1 stchoice 2n%hoice 

^ , ~ ^ , Width Peak 
Channel I a(l) I (aI) Choice I/-R/N 4o" position 

~',t o +0.?, + o =  + 

010+02+02+ 

~' 10 +0;;+0 2 + 

= +,  ~o4 +37 +~ ~ a 9  + 4 0  + ,  + t .  ~ o 6  +:~4 +80 
i + 1 0 8 6 0  +1o7  + , 0 9 0 3  + t o 7  +z + t . : ~ 9 o  +24 +80 
o + 7 2 6  +30 + 7 3 0  +34 +* + o .  7 4 t  +24  +6 5 

7 

"x~5 
•965 
. t l l  

• 10+02+01 + 2 

~'10+02+01+ 1 

m10+02+01 + 0 

+ z 8 7  +a~ + 5 9 5  +z7  + ,  + o .  890  +24 +77 
+3 +** +3 +*9 +~ +1.o ,1  +24 +7o 

+ 3 = 4 5  + 6 ,  +324 6 +60 +2 +* . 7 6 9  +24 +62 

• oi 9 

•ooo 

-715 

• I n +o 2 +o0 - ;~ 

01o+o~+0o- 1 

"1o +02+00" 0 

+ , 9 0 4  +48 +~89~  +46 +z + 1 . ~ 4  o +~4 +76 
+ * 7 7 0  +4 6 + , 7 8 7  +44 +2 + * . 3 3 9  +~4 +73 

+674  +a 9 + 6 8 2  +33 +* +t . 0 4  o +24  +6 t  

.460 

.432 

.o97 

• lO4-02+o 1- 

° lO +02+oI[- 1 

~' 1o+02+o 1 -  0 

+79 +x5 +,o, +a3 +x +0•956 +24 +77 
+ao9 +x9 +ao9 +24 +, +0.704 +24 +73 

+ 3 0 5 9  +5 8 + 3 0 5 4  +59 +* + 0 . 9 5 5  +24 +6~ 

•o01 

,OlO 

. 6 9 0  

°10+0.3+02-- 2 

~' 1 0  + 0 2 + 0 2 - -  0 
o 

+793  +32 +794  +35 +* + 0 . 8 6 7  + 2 4  +74  
+ t 5 O v  +42 + * 5 8 7  +44 +* + 0 . 7 5 0  +24  +73 
+12o +,6 +,,8 + z a  +, +t.oo, +24 +59 

.13o 
.375 
• 003 

,,, 1 o + o 2 + o  3 - ~. 

• ' , o  + o 2 . + o  3 -  1 

~ , 1 o + 0 2 + 0 3 -  o 

+ 2 9 8  +25 +3* * +27 + ,  + 0 . 9 9 7  +24 + 7 o  
+ * 7 6  +17  + ~ 6 z  +52 + ,  + 0 . 8 8 0  +24 + 7 t  
+x,o +*7 +*32 +23 +* +o.8x3 +z4 +55 

• 0 2 0  

.007 
• 0 0 2  

*, 10+o ~. +o 4 - 
e*o+O£+O 4 -- 1 

°Io+0~+04 - 0 

+569  +28  +592  +32 + t  + 0 . 7 7 8  +24  +72 
+ 2 7 8 3  +55  + 2 7 8 a  +56 +* + 0 . 9 4 9  +24 +7 ~. 

+x3 +t3 PEAK MOVED ABRUPTLY 

.o7: 
•648 

a ' t o + o 2 + o  5 -  5 

• 1 o + o 2 + o  5 - , 

" 1 o + o 2 + 0  5 -  0 

+ 4 5 8  +3x +452  +z6  +z + , .  x51 +24 + 7 t  
+725 +30 + 7 , z  +33 +* + 0 . 7 5 2  +24 +7x 

+ x 9 x 7  +4 8 + * 9 5  o +47 +z + t . 4 9 8  +z4  +57 

•046 
. 1 1 1  

. 4 7 5  

• ,o+o2+o6- 2 
• 1o+02+06- , 

• 1 0  +02+0 6-- 0 

+,SO, +55 +250 5 +2 +,.369 +69 
+30 7 +22 +3 ° 5 
+567 +28 +545 +32 +1 +1.o, 5 +94 +56 

• 599 
, 0 2 2  

, 0 7 i  

,Io+o~+o7- 
• 1o+o2+o7- I 

• 1o+o2+o 7- o 

+5* ,6 +74 +5°77 +76 +* +0.776 +24 +66 
+405 +24 +426 +29 +, +t .o3o +24 +68 

+*487 +45 +*509 +42 +2 +t •243 +2o +53 

• 861 
.o37 
.351 
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of the peak is half the frame width, thus allowing a 
positional tolerance for the peak equal to its own width. 
For the BPB method to operate with the same posi- 
tional tolerance additional measurements corre- 
sponding to the shaded areas are made so that the BPB 
method is subject to a further disadvantage not re- 
presented in Fig. 4 of a factor of 2 on the data collec- 
tion time or of 1/2 on the percentage ¢r(I)/L The 
broken line is the limiting case common to all three 
methods when the background is zero. 

One of the main advantages of this on-line procedure 
is that the number of reflexions which are measurable 
by any chosen criterion of precision is much increased 
in relation to the BPB method, and this is of great im- 
portance in the protein field in which weak reflexions 
are especially numerous. This is illustrated in fig. 5 
for a random group of reflexions between 2.8 A and 

4.5 A showing, in histogram form, the distribution of 
the number of reflexions measured with each accuracy. 
The figures 73%, 62% and 55% are the proportions of 
the data measured with accuracy better than 50% for 
each of the methods, A, B and BPB. 

The other major advantage which the procedure 
offers is a large degree of internal consistency checking 
which provides traps for many conditions that might 
otherwise be detectable only photographically or by 
direct inspection of the ordinates collected. 

I should like to record my indebtedness to Mr 
G. G. Grindley and Miss L. C. G. Goaman for their 
patient assistance during the proving period, to Mr 
R. P. Phizackerley for an input routine on which the 
present input routine from the counters is modelled, 
and to Dr U. W. Arndt for Figs. 4 and 5. 
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Fig. 2. An example of an observed and calculated profile. A particularly bad case (see text). The vertical bar marks the separation 
of peak region from background region for method B, and the horizontal bar is the background level as set by method B. 

f / / / / ' ~  1 6 0 0  ~ 0 / 0 / ~ /  

f r a m e  w i d t h  
--a a 

Fig. 3. Showing the basis of the comparisons made in Fig. 4. The peak is supposed to occupy half the frame width. 
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APPENDIX A 

A study of the unweighted multi-profile case 

We suppose the N observations y to be expressed by 

y = G k + e ,  (A-l)  

in which y and ~ are column matrices of dimension 
N, 7. is a column of dimension M < N and G is a rec- 
tangular matrix containing columns g l , g 2 , . " g M  
which are functions being fitted to the observations. If 
each g is normalized by 

fig~ = 1 (A-2) 

with f i= (1 ,1 , - . .  1) and if all the elements of g~ are 
1/N (representing a background function), then if ~ is 
found by minimizing ~e, 21 is the background integral 
and VX is the integrated intensity where 

V = (0 ,1 ,1 , . . .  1), dimension M .  (A-3) 

Now the least-squares solution is 

X = ( C G ) - ~ y  (A-4) 

and the integrated intensity is 

I =  V(I~G)-~(~y. (A-5) 

Now OI/Oy~ is the ith element of the row vector 
V(~G)-aG and we wish to find the variance 

az(I)= S y~=~(¢]G)-~YG(¢]G)-lv (A-6) 
1 

where Y = diag y. 
It has been shown in the text (equation (10) et seq.) 

that the advantage in profile fitting arises from the 
fact that c~> 1 i.e. that the contribution of the back- 
ground to the variance may be lower in profile fitting 
than in method B, and since this is the source of the 
advantage, we here attend only to the contribution of 
the background to the variance with a view to maxi- 
mising that advantage. 

Evidently the coefficient, r, of 21 in a2(I) is, from 
(A-6) 

1 V(I~G)_I v t ' =  ~ . -  

which is 1/N times the sum of all elements in (I]G)-t 
other than those in the first row and/or first column. 
Now, all elements in the first row and/or first column 
of ¢]G are I/N, therefore the sum of all the elements in 
any column of (I]G) -1, other than the first column, 
vanishes, so that ~(GG)-~v is minus the sum of all the 
elements in the first row of (¢]G) -~ other than the first 
element. Likewise the sum of all the elements in the 
first row of (¢]G) -~ is N, so that we have finally 

~(CJG)-~v = (~jG)i~ 1 -  N ,  

or, more generally, 

r=(GG)t l  (GG)fi ~ -  1 (A-7) 

identifying 1/N with (¢~JG)ll. 
fg~gl ll~g~ll 

r =  - - 1 ,  
Ill, gill 

in which 2 < i, j < M in the numerator and 1 < i, j < M 
in the denominator. Subtracting the first row from all 
rows in the denominator gives 

Ilfg~gjll r= - 1 2 < i , j < M .  
II~igj- ~lg~ll 

Subtracting the first column from every column, 
leaving the first column unchanged, in each deter- 
minant gives 

Ill, g2, ~ ( g j -  g2)ll 2 < i < M 
r . . . . . . . . . . . . . .  .... 1 - - 

II~igz- ~1gl, ~i(g~- g2)ll 3 _<j < M 

I1~1gi, ~ (g~ -  g2)ll 
II~g~g2-gxg~, ~ (g~-  g2)ll 

r I1~191, ~(gj-g2)l l  
• m 

r +  1 Ill,g2, ~(gj-g2)l l  " 
Subtracting the first row from every row and leaving 

the first row unchanged gives 

f - ~1gl II(~-fg2)(gj-g2)ll  3<i, j < M .  
r-t- 1 -II  ~2g, , ~2(gj-g2) ' 

(~ - ~2)g2, (g,~ - 22) (gJ -  g2)II 

Now resolve g2 into 

g 2 = f + F  

such that F is a linear combination of the functions 
(gj-g2) ( 3 < j < M )  and f is orthogonal to these, i.e. 

f (g j -  g2) = 0 ,  3 < j  < M .  

The determinant in the denominator then becomes 

I {f + i~F , ~ ( g j -  gz) i 
(~i-~2)F, ( ~ -  ~g2) (gj -gz)  [ 

(~I~F , i~(gj- g2) 
=f f  II(g~- g2) (gj-g2)]l + --g2)F,(gt-g2) ( g j -  g2): 

60 - ~ ' - - - ~ e t h o d  
Method\ B [BPB B-1600 COUNTS 

A 

40 

a(~._)) °/° 

2O 

(~ I I i I I / I 

50 100 200 300400500 1000 20003000 5000 
NET COUNTS, / 

Fig .4 .  S h o w i n g  ~(I)/I as  a p e r c e n t a g e  as a f u n c t i o n  o f  I o n  
the  bas i s  o f  Fig .  3, f o r  m e t h o d s  A, B a n d  BPB. 
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and the second determinant vanishes because F is a 
linear combination of the (gj-g2) • 

r gig1 gig1 
. ' ,  _ _  

r + l  f¢ - ~2g2 

r >  (g292 _1)  -1 (A-8) 
- -  \ glgl 

and the limiting case of equality occurs when g292----ff, 
i.e. when F = O  and ~2(gl-gz)=0, 3<_j<M. 

From this we conclude that increasing M, the number 
of curves fitted to the observations, beyond 2 must in- 
crease r, thereby eroding the advantage of curve fitting, 
unless g3" "gM all satisfy 

fh(gj -  g2) = 0.  (A-9) 

We now proceed to consider a system with M_> 3 
within the condition (A-9) and with a view to per- 
mitting the fitted curve G~, to fit observed curves of a 
variety of shapes. 

The normal matrix rIG is then of the form 

( ~1gl ~1gl ~lgx glgl)  
glgt g2g2 g2g2 g2g2 
glgl g2g2 g3g3 g3g4 
glgl gzg2 g4g3 g494 

for M---4. The first two rows and columns are now 
special and the remaining ones are not. For brevity we 
write 

( a  a a a ) ( q  r s t )  
(C,G)= a b b b ((;G)_I= r u v w 

a b  c d  s v x y  
a b d e t w y z 

0 10 20 30 40 50 
I I I I 

73"/, [ Method A 

62°/. l Method B 

5 5 *  I BPB 

Multiplying the 1st row of GG by the 1st column of 
(~G) -1 gives 

a(q+r+s+t)=l  . 

Multiplying the 2nd row of GG by the 1st column of 
(t~G) -1 gives 

aq+b(r + s + t)=O . " .r + s+ t - 
1 

a - b  " 

Multiplying the 1st row of t~G by the 2nd column of 
(t~G) -1 gives 

a(r+u+v+w)=O. 

Multipying the 2nd row of GG by the 2nd column of 
(GG) -1 gives 

1 
ar +b(u+v+ w)= l . ' . u + v + w -  

b - a  
Multiplying the 1st row of ~,G by the 3rd column of 
(GG) -1 gives 

a(s+v+x+ y)=O. 

Multiplying the 2nd row of t~G by the 3rd column of 
(I~G) -a gives 

as+b(v+x+y)=O . ' . v + x + y = O  u n l e s s a = b .  

(A-5) now gives us 

i=~(~,G)_~gjy=( 1 1 0,0) Gy 
a - b ' b - a '  

- a - b  ( g l - - g 2 ) Y  - -  - Y glgl - ~,2g2 

and the generalization for all M > 3  is obviously the 
same. 

This expression is identical with the expression ob- 
tained when M = 2  (cf Appendix B), i.e. when we fit 
a background and a single curve to the observations. 
Therefore we have proved that if we fit a background 
and more than one curve to the observations (with a 
view to avoiding systematic errors) then either 

(i) The expression for I is unchanged so that its 
susceptibility to systematic error is also unchanged or 

(ii) r increases so that the contribution of the back- 
ground to the variance is more than minimal. 

It follows that the shape of g2 alone is relevant and 
all important, and that the only possibility of mini- 
mizing the variance and of avoiding systematic error is 
to use the single curve gz and arrange for its shape to 
match the shape of the observed profile in the sense 
that g292 =g2h2, as shown in Appendix B. 

0 10 20 30 40 50 
°/0 o 

Fig. 5. Histograms showing the distribution of the number of 
reflexions occurring with a given precision for each of the 
three methods. 

APPENDIX B 

In this Appendix we obtain formulae for I and a2(I) 
when fitting a constant function gl and a single profile 
curve g2 to the unweighted observations for the general 
case and for the two special cases discussed in the text. 
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Equation (A-5) for the case M =  2 reduces immediate- 
ly to 

I= ~1-~2 glgl-~2gz y (B-l)  

because 
glg2----- gig1 = 1/N.  

Now suppose 
y = hl/11 -t- h2/12, (B-2) 

in which hi again represents the background function 
and hE the shape, both being normalized according to 
(A-2), so that necessarily 

h i  = g l  ; 

then combining (B-l)  and (B-2) gives 

I=/12 f~lgl - ~2h2  N~2h2-1 (B-3) 
~1gl-  g2g2 =/12 N~2g2-1 

so that I is a true measure of the integrated intensity 
/12 if and only if ~2h2 = ~2g2. 

For the variance a2(I) we take equations (A-6) and 
(B-l)  giving 

g l  - g2 y g l  - g2 
a2(I)= (~1gl- ~2g2) (~1gl- ~2g2) 

or, using a notation in which f~ is a row vector, the 
ith element of which is the square of the ith element of 
~,1, we have 

trz(i) = f ~ -  2glgz + ~,22 
(~1gl -- ~2g2)2 Y' 

which, on inserting (B-2) and recalling that each ele- 
ment of gl and hi is l /N,  gives 

1 1 - 2Nfg2h2 + N2~h2 (B-4) 
a2(I) =/ix Nfl2g2-1 +/12 [Nfg2g2-1] 2 

Equations (B-3) and (B--4) are for the general case A 
in Table 1. For case B we suppose that g2 is constant 
within the peak region and equal to 1/m where m is 
the number of peak ordinates, and is zero in the back- 
ground region of n = N - m  ordinates. Then, assuming 
only that h2 vanishes in the background region but is 
normalized and of any shape, substitution in (B-3) and 
(B--4) gives immediately 

m 
1=/12 and t72(l)=/11---~--}-f12 . (B-5) 

For case C of Table 1, g2 and h2 represent Gaussians, 
and for analytical purposes it is convenient to replace 
sums such as gzg2 by corresponding integrals. Suppose 
that the working range containing N ordinates is of 
width 2a in the continuous variable x which forms the 
abscissa, so that successive ordinates are separated by 
an interval 0x = 2a/N and let each function g or h have 
primed counterparts which are continuous such that 

l a g  ' dr= 1, 

then the continuous function is related to the discrete 
one by 

g'Ox=g , 

assuming the sampling interval is fine enough to allow 
this. Then 

S 1 (g'2fix)2dx = fix g2 dx g a g 2 = Z ' g ~ = ~  a a ' 

similarly 

~2h2 (t~x)2 la_ " 2 - - ' - -  = g2 1"12ax • 
a 

Setting 

1 
g'2 = - 7  exp ( -  ~zxZ/pZ)=--f(p,x) 

P 

, 1 
h2 = q exp ( -  rcx2/qZ)=f(q,x), 

then using the property that 

f ( p , x ) f (q ,  x) = (p2 + q2)-l/2f[(p-2 + q-2)-1/2, x] 

leads at once to 

and 

1=/12 

l~ 2p2 
2a l / pU+qZ P¢2  

2a - P  l/2 
(B-6) 

1 
o"2(1) =/11 2alp 1/2-1 

4a 4a 2 
1 - - + - -  

/p2 + q2 p V-~-+-2q-2 

+ P2 . . . . . . . . . . .  [2a/p]/2-1] 2 (B-7) 

R e f e r e n c e  

GOSSLING, T. H. (1967). Acta Cryst. 22, 465. 

DISCUSSION 

HOPPE" Can your method deal with the ~-doublet? 

DIAMOND: In principle, yes, but there are some practical 
difficulties. The program must be able to deal with a varying 
position of the peak within the frame; hence the first step 
is to fold the profile about the median ordinate. So long as 
the program locks unequivocally on to the same part of the 
profile there is no basic difficulty. We do not go out to Bragg 
angles where the ~-doublet is resolved: the nearest analo- 
gous situation was one in which the crystal was split. Here 
the program clearly detected the splitting of the profile. 

JOHNSON" How do you deal with very rapidly changing pro- 
files, such as when the crystal planes are curved? 

DIAMOND: In the early days we used a scan along reciprocal 
lattice lines where we had a rapid variation of spot shape 



R. D I A M O N D  55 

owing to rapid changes in the Lorentz factor. At that time 
we tried to use the trend, that is the rate of change, of the 
profile. We now use an co scan where this is not worth 
while since we measure the reflexions in an orderly sequence 
along a zigzag path through the lattice. The reciprocal 
lattice lines are very crowded, and so the change in profile 
from one reflexion to the next is slow. With more widely 
separated reflexions it might be necessary to take the trend 
into account. 

COPPENS: How do you start the process? 

DIAMOND" The program is primed with a hypothetical pro- 
file. The first one or two reflexions are thus badly matched 
until the program has learnt a better approximation. 

HAMILTON: IS it necessary to be connected on-line to a 
computer? You are not using the computer to make running 
alterations. 

DIAMOND: You could record the 128 ordinates of each re- 
flexion on an off-line magnetic tape; the computer is most 
useful in reducing the output. 
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Present Problems and Future Opportunities in Precise Intensity Measurements 
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Considerable progress is foreseen toward the precise determination of integrated X-ray reflection 
intensities from small single crystals. High on the list of presently-limiting problems are multiple reflec- 
tion, extinction, thermal diffuse scattering, unnecessary other background, counting statistics, effective 
integration and specimen change. Specific recommendations for equipment design and use are made 
which will partially alleviate each of them. Opportunities for better utilization of existing equipment 
through improved strategies for data collection and employment of small on-line computers are pointed 
out. 

Introduction 

Accurate determination of Bragg intensities and struc- 
ture factors depends both on well-designed diffracto- 
metric experiments and on application of corrections 
for factors not subject to experimental control. In the 
context of integrated intensities and small single crys- 
tals, this paper is concerned with the good design of 
the experiments, of which there are two principal and 
interacting aspects, equipment design and measure- 
ment strategy. Recent years have brought considerable 
progress, particularly in equipment design, and preci- 
sion in the 2 or 3% range has become almost routine 
(Abrahams, Alexander, Furnas, Hamilton, Ladell, 
Okaya, Young & Zalkin, 1967; Ladell, 1965; Young 
& Sudarsanan, 1968; Zachariasen & Plettinger, 1965). 
However, there are several only partially solved prob- 
lems and a number of opportunities for which signi- 
ficant progress can yet be expected in the foreseeable 
future. The problems discussed here are multiple re- 
flection, extinction, thermal diffuse scattering, other 
background content, counting statistics, effective inte- 
gration, and specimen change, e.g. annealing, radia- 
tion damage or deterioration. For each problem, one 
or more directions for experimental progress are indi- 
cated and, where appropriate, forward reference is 
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made to other papers in this conference. Areas of 
opportunity discussed include (1) improvements in 
diffractometer design to provide more efficient use of 
the incident flux, (2) optimization of the data-collec- 
tion strategy for the particular purpose (e.g. parameter) 
of interest and to assist in data validation, handling 
and reduction, and (3) control of specimen-environ- 
mental parameters as part of the diffraction experi- 
ment. Some comments about the purposes to be served 
by, and requirements of, on-line computers are included. 

Multiple reflection 

Though recognized for many years (Renninger, 1937), 
multiple reflection has only recently begun to be 
seriously considered as a source of significant errors in 
'routine precision' measurements of Bragg intensities. 
When two or more reciprocal lattice points are in 
contact with the Ewald sphere at the same time, inten- 
sity is reflected out of the stronger beams into the 
weaker ones. The degree to which this occurs depends 
on the number of reflections operating at once, the 
strengths of the coupling reflections, and on much the 
same parameters, especially mosaic spread, as are im- 
portant  to secondary extinction (Zachariasen, 1967). In 
a hypothetical extreme case, as Zachariasen (1965 a, b) 
has pointed out, the result could be to make all re- 
flections appear to have the same intensity. In practice, 
as Zachariasen has shown theoretically and Post (this 


